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ABSTRACT

This paper demonstrates that an operational forecast model can skillfully predict week-3–4 averages of

temperature and precipitation over the contiguous United States. This skill is demonstrated at the gridpoint

level (about 18 3 18) by decomposing temperature and precipitation anomalies in terms of an orthogonal set

of patterns that can be ordered by a measure of length scale and then showing that many of the resulting

components are predictable and can be predicted in observations with statistically significant skill. The sta-

tistical significance of predictability and skill are assessed using a permutation test that accounts for serial

correlation. Skill is detected based on correlation measures but not based on mean square error measures,

indicating that an amplitude correction is necessary for skill. The statistical characteristics of predictability are

further clarified by finding linear combinations of components that maximize predictability. The forecast

model analyzed here is version 2 of the Climate Forecast System (CFSv2), and the variables considered are

temperature and precipitation over the contiguous United States during January and July. A 4-day lagged

ensemble, comprising 16 ensemble members, is used. The most predictable components of winter tempera-

ture and precipitation are related to ENSO, and other predictable components of winter precipitation are

shown to be related to the Madden–Julian oscillation. These results establish a scientific basis for making

week-3–4 weather and climate predictions.

1. Introduction

Operational weather forecasts are skillful out to

7–10 days (Simmons and Hollingsworth 2002), and

operational seasonal forecasts are skillful out to

3–8 months (depending on season and model; Barnston

et al. 2012), but there is relatively limited evidence that

forecasts are skillful in the intermediate 3–4-week range

(Newman et al. 2003; Pegion and Sardeshmukh 2011;

Wang et al. 2014). If skillful forecasts in the 3–4-week

range existed, they would have significant social and

economic value because many management decisions in

agriculture, food security, water resources, and disaster

risk are made on this time scale. However, most studies

that claim predictability in the 3–4-week range identify

this skill in the tropics (Li and Robertson 2015), in

upper-level quantities like geopotential height fields

(Pegion and Sardeshmukh 2011), or in certain global

climate indices (Wang et al. 2014), whereas the skill of

midlatitude land surface quantities like 2-m temperature

or precipitation tend to be negligible (Li and Robertson

2015). Johnson et al. (2013) develop an empirical model

for predicting North American 2-m temperature out to

4 weeks based on a linear trend and statistical relations

with theMadden–Julian oscillation (MJO) andEl Niño–
Southern Oscillation (ENSO) and find that this empir-

ical model has skill in certain regions and phases of the

MJO. This paper will show that an operational forecast

model makes skillful predictions of week-3–4 average
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temperature and precipitation over the contiguous

United States (CONUS).

Predictability of temperature and precipitation de-

pends verymuch on the spatial and temporal scale under

consideration.Beyondweather time scales (e.g., 7–10days),

it is widely accepted that only large-scale spatial struc-

tures are predictable. Accordingly, we propose a novel

approach to investigating subseasonal predictability

using a set of spatial patterns that can be ordered by

length scale.Wewill show that week-3–4 averages of time

series corresponding tomany of these spatial patterns can

be skillfully predicted by a state-of-the-art prediction

model. In addition, we find linear combinations of these

time series that maximize predictability and show that

many of these predictable components can be predicted

with skill.

2. Data

The computations performed in this study are strongly

constrained by the availability of forecasts; hence, it is

helpful to discuss data issues first. We analyze retrospec-

tive forecasts, called ‘‘hindcasts,’’ from version 2 of the

Climate Forecast System (CFSv2; Saha et al. 2014). The

CFSv2 is a coupled atmosphere–ocean–land–ice model

and is initialized based on analysis products for the at-

mosphere, ocean, land, and sea ice. The hindcasts under

investigation were initialized at 0000, 0600, 1200, and

1800UTC of each day over the 12-yr period from January

1999 to December 2010. Although these hindcasts were

integrated out to 45 days, only the 2-week mean of weeks

3–4 were considered. Only one hindcast per initialization

time is available, so a lagged-ensemble approach is em-

ployed whereby an average of forecasts initialized at dif-

ferent times but verifying at the same time were used. In

general, skill increases with the size of the lagged

ensemble until it saturates around 4 days (as shown in

section 4). Accordingly, we consider hindcasts based on a

4-day lagged ensemble, which contains 16 members, de-

rived from four hindcasts per day. To be clear, the 4-day

lagged ensemble is computed from hindcasts that are ini-

tialized at or before time t and that verify from times t1 15

through t1 28 days (inclusive). We consider hindcasts of

temperature and precipitation over CONUS initialized

only in January and July (i.e., boreal winter and summer).

For verification, the 2-week mean temperature is

compared to estimates from the NCEP–NCAR re-

analysis (Kistler et al. 2001). Similarly, hindcasts of daily

precipitation were verified relative to the Climate Pre-

diction Center (CPC) unified gauge-based analysis

(Chen et al. 2008).

Climatologies of daily temperature and precipitation

are quite noisy and require significant smoothing. No

significant dependence of hindcast climatology on lead

time was detected, so the model climatology for each cal-

endar day was estimated by averaging all hindcasts veri-

fying on the same day and over all lead times. In addition,

the daily climatology was fit to a second-order polynomial

over the 76-day period starting from thefirst of eachmonth.

Various checks and visual comparisons were made to en-

sure that the estimated climatologies were reasonable.

MJO indices are computed from CFSv2 hindcasts in

the manner of Trenary et al. (2017). Specifically, the

familiar real-time multivariate MJO indices (RMM1

and RMM2) of Wheeler and Hendon (2004) were de-

rived from an EOF analysis of observations, and then

the resulting EOF patterns were projected on model

variables. In contrast to the standard approach, a 120-day

running mean was not subtracted from the indices;

hence, our MJO indices include interannual variability.

3. Methods

This section describes our methods for 1) defining an

orthogonal set of large-scale patterns, 2) quantifying

predictability and skill, and 3) finding patterns that

maximize predictability and skill.

a. Eigenvectors of the Laplacian operator

We project temperature and precipitation fields onto

the eigenvectors of the Laplacian operator over

CONUS. Laplacian eigenvectors provide a convenient

orthogonal basis set that can be ordered by a measure of

length scale. Special cases of Laplacian eigenvectors

include Fourier series and spherical harmonics, which

are used routinely to decompose time series by time

scale and spatial structures by length scale, respectively.

Eigenvectors of the Laplacian operator over CONUS

were obtained using a Green’s function method de-

scribed in DelSole and Tippett (2015), which should be

consulted for details (codes are available upon request).

The resulting spatial patterns are orthogonal with re-

spect to an area-weighted inner product and ordered

such that the first corresponds to a spatially uniform

pattern over the domain (i.e., the largest spatial scale

that fits in the domain), and subsequent patterns corre-

spond to dipoles, tripoles, quadrupoles, and so forth of

decreasing length scale. These vectors depend only on

the geometry of the domain and therefore are data in-

dependent, in contrast to empirical orthogonal functions

(EOFs). Thus, a single set of spatial patterns are used to

analyze different variables and seasons.

Laplacian eigenvectors 2–10 over CONUS are shown

in Fig. 1. The first eigenvector is not shown because it

equals a constant over the whole domain. The second

and third eigenvectors measure the east–west and
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north–south gradients, respectively. The next two ei-

genvectors correspond to a tripole and quadrupole, and

so on. The percent variance of observed 2-week means

explained by the first 20 Laplacian eigenvectors is shown

in Fig. 2; similar percentages are found in themodel (not

shown). As expected, the explained variance tends to

decrease with decreasing spatial scale.

b. Measure of predictability

Predictability refers to the degree to which a variable

in a model is predictable by that model. As such,

predictability is an inherent property of a model that can

be measured independently of observations. The stan-

dard approach to measuring predictability is to consider

an ensemble of predictions initialized at equally likely

states of the system. Although the CFSv2 reforecast

dataset does not have multiple ensemble members for

the same initial condition day (i.e., a ‘‘burst’’ ensemble),

an ensemble can be approximated by grouping hindcasts

initialized 6 h apart and that verify on the same day. The

resulting ensemble often is called a lagged ensemble

(Hoffman and Kalnay 1983). Let f (t, t2 t) denote the

FIG. 1. Laplacian eigenvectors 2–10 over the contiguous United States.
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forecast anomaly initialized at time t2 t and verifying at

time t, where t is the lead time; time is measured in units

of days. If E is the ensemble size, then the mean of the

lagged ensemble is defined as follows:

~f (t, t2 t)5
1

E
�
E21

e50

f (t, t2 t2 e/4), (1)

where e/4 arises because hindcasts were initialized 6 h

apart (i.e., 1/4 of a day apart).

If a variable is not predictable, then the ensemble

members would be independent and the expected vari-

ance of the ensemble mean s2
S would be 1/E times the

expected variance of the climatological distribution s2
N .

The standard test for this hypothesis is analysis of vari-

ance (ANOVA; Rowell 1998). To test the null hypoth-

esis of no predictability, ANOVA uses the statistic

F5E
ŝ 2
S

ŝ 2
N

, (2)

where ŝ2
S is an estimate of the variance of ensemble

means (i.e., ‘‘signal’’), given by

ŝ2
S 5

1

T2 1
�
T

t51

[ ~f (t, t2 t)]2, (3)

and ŝ2
N is an estimate of the variance about the ensemble

means (i.e., ‘‘noise’’), given by

ŝ2
N 5

1

T(E2 1)
�
T

t51
�
E21

e50

[f (t, t2 t2 e/4)2 ~f (t, t2 t)]2.
(4)

If the noise perturbations are independent and iden-

tically distributed Gaussian random variables, then F

follows an F distribution with T2 1 and T(E2 1)

degrees of freedom, which can be used to test signifi-

cance. Unfortunately, the independence assumption is

unrealistic for forecasts initialized a few days apart be-

cause large-scale fields tend to be serially correlated

on daily time scales. Therefore, the standard hypothesis

test is not appropriate for subseasonal forecasts. We

propose a block permutation test for deciding pre-

dictability. Specifically, under the null hypothesis of no

predictability, the forecasts would be exchangeable in the

sense that each value ofF obtained from a permutation of

(independent) samples is equally likely. Accordingly, we

construct a permuted ensemble by drawing forecasts

from random years. Importantly, the entire sequence of

forecasts within a year are drawn, ensuring that the serial

correlation across consecutive days is preserved. This

sampling is tantamount to randomly permuting (or

‘‘shuffling’’) the years assigned to the forecasts. The sta-

tistic F is computed for the permuted ensemble, and this

procedure is repeatedmany times (i.e., 10 000 times). The

rank of the F obtained from the unpermuted ensemble is

evaluated relative to the values of F for the permuted

ensembles. Under the hypothesis of exchangeability, the

rank is uniformly distributed. The actual lagged ensemble

is said to be predictable if the observed value ofF exceeds

the 95% percentile of the F values obtained from per-

muted samples.

c. Measure of skill

Skill refers to the degree towhich a forecast predicts the

observed variable. Two standard measures of skill are

mean square error (MSE) and correlation r. Significance

tests for skill based on mean square error have been dis-

cussed by DelSole and Tippett (2014), while those based

on correlation are standard. Unfortunately, these tests are

not appropriate for forecasts initialized at daily intervals

because of the serial correlation mentioned above. We

again apply a permutation method in which the year la-

bels for the observations are randomly permuted. By se-

lecting the entire sequence of observations within a year,

the serial correlation between observations on daily time

scales is preserved. After shuffling the year labels for the

observations, the correlation coefficient between fore-

casts and shuffled observations can be computed. This

procedure is repeated many times (i.e., 10 000 times) to

build up an empirical distribution for the correlation un-

der the null hypothesis of independence. The 95th per-

centile of the resulting samples then defines the 5%

significance threshold value for the correlation coefficient.

d. Predictable component analysis

In some cases, none of the time series for the Laplacian

eigenvectors can be predicted with skill. However, this

result does not prove that there is no skill, because it is

FIG. 2. Fraction of variance of observed 2-weekmeans explained by

individual Laplacian eigenfunctions 1–20.
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possible that some linear combination of eigenvectors can

be predicted with skill. To test this possibility, we find the

linear combination of eigenvectors that maximize the pre-

dictability measure F in (2). This procedure is formally

equivalent to predictable component analysis (see DelSole

and Tippett 2007 for a review). We briefly review this pro-

cedure to clarify its application in our particular situation.

Let theweights of the linear combination be q1, q2, . . . , qM

such that the quantity being forecast is the following:

f (t, t2 t)5 �
M

m51

q
m
F
m
(t, t2 t), (5)

where Fm(t, t2 t) is the forecast anomaly for the mth

Laplacian eigenvector. If the weights are collected into

the vector q, then the predictability error measure (2)

can be written equivalently as follows:

F5
qTS

S
q

qTS
N
q
, (6)

where SS and SN are covariance matrices for the en-

semble mean and residuals about the ensemble mean,

respectively, defined as

(S
S
)
ij
5

E

T2 1
�
T

t51

~f
i
(t, t2 t)~f

j
(t, t2 t), (7)

and

(S
N
)
ij
5

1

T(E2 1)
�
T

t51
�
E21

e50

[f
i
(t, t2 t2 e/4)

2 ~f
i
(t, t2 t)][f

j
(t, t2 t2 e/4)2 ~f

j
(t, t2 t)].

(8)

Tofind an extremum,wedifferentiate (6)with respect to q:

›F

›q
5

2S
S
q

qTS
N
q
2 2

qTS
S
q

(qTS
N
q)2

S
N
q , (9)

5
2

qTS
N
q
(S

S
q2 lS

N
q) , (10)

where l is the value of F for the linear combination

defined by the weights q. IfSN is positive definite, which

is typically true when the number of Laplacian eigen-

vectors is much smaller than the sample size, then the

derivative vanishes when q satisfies the generalized ei-

genvalue problem:

S
S
q5 lS

N
q . (11)

It can be proven that if the eigenvalues (and corre-

sponding eigenvectors) are ordered in descending order,

then the first eigenvector maximizes F, the second

maximizes F subject to being uncorrelated with the first

eigenvector (in a sense defined shortly), and so on.

Moreover, the eigenvalues give the corresponding

maximized F values. These solutions define the pre-

dictable components, the first of which will be called the

‘‘most predictable component.’’ Each eigenvector can

be substituted in (5) to define the time series associated

with that component. Because covariance matrices are

symmetric, the resulting time series for different com-

ponents are uncorrelated. The spatial structure of the

predictable component is obtained from regression. The

regression coefficient between the predictable compo-

nent time series in (5) and the mth Laplacian eigen-

vector is

(p)
m
5 h f (t, t2 t)F

m
(t, t2 t)i5 (S

N
q)

m
. (12)

The Laplacian eigenvectors are then summed using

weights specified in the vector p. Note that a regression

coefficient can be computed for the mth Laplacian ei-

genvector even if that vector was not included in the

optimization procedure discussed above (e.g., when

m.M). We use M5 20 Laplacian eigenvectors to

construct the spatial pattern. This choice effectively

imposes a prescribed level of spatial smoothing for the

regression pattern.

Note that the above procedure yields a complete set of

predictable components for each lead time t. This lead

time dependence is sensible because predictability is

characterized by different patterns at different time

scales. An alternative approach is to characterize pre-

dictability over all time scales, which can be done by

maximizing a measure of predictability integrated over

all lead times. This approach is called average pre-

dictability time (APT; DelSole and Tippett 2009) anal-

ysis. APT analysis is not used here because we want to

demonstrate the existence of predictability specifically

for the week-3–4 forecasts. Although APT analysis can

find predictable components on subseasonal time scales,

testing the hypothesis of predictability on subseasonal

time scales is not straightforward because the integral

includes the short weather lead times that are predict-

able. By applying predictable component analysis

for only one lead time, subseasonal predictability can

be tested in isolation from predictability on other

time scales.

The sampling distribution of the maximized F values

(i.e., the eigenvalues) under the null hypothesis of no

predictability can be estimated using a permutation

technique similar to that described above, in which the

label for years assigned to forecasts are randomly per-

muted. The only extra step is that instead of drawing a
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single variable, an entireM-dimensional vector is drawn,

corresponding to the amplitudes of the M Laplacian

eigenvectors for the relevant forecast. Again, an essen-

tial element of the technique is to draw the entire se-

quence of forecasts within a year for theM eigenvectors,

which preserves the serial correlation on daily time

scales. After generating a mock ensemble forecast

dataset comprising T time steps and E ensemble mem-

bers, the covariance matrices are computed and the

generalized eigenvalue problem in (11) is solved. This

process is repeated many times (i.e., 10 000 times) to

build up an empirical distribution for the eigenvalues.

4. Results

The correlation skill of 4-day lagged ensembles of

temperature and precipitation of week-3–4 hindcasts

over CONUS during January and July is shown in Fig. 3.

Statistically insignificant values at the 5% level (ac-

cording to the permutation test) are masked out. The

figure shows that winter temperature and precipitation

and summer temperature are skillfully predicted by the

CFSv2over a third to ahalf of the areaofCONUS.Summer

precipitation shows effectively no skill (e.g., the number of

positive andnegative correlations are approximately equal).

Although some negative correlations are statistically sig-

nificant in a local sense, we do not believe them to be field

significant.

Our goal is to diagnose the predictability and skill shown

in Fig. 3 in terms of large-scale spatial structures. The

predictability and skill of individual Laplacian eigenvectors

of January temperature as a function of ensemble size is

shown in Fig. 4. Qualitatively similar results are obtained

for other variables and time periods. Not surprisingly,

predictability decreases with ensemble size because each

additional member is initialized farther from the target and

therefore contains more noise. The signal-to-noise ratio

(SNR) decreases by a factor of 2–3 from a 12-h to a 4-day

lagged ensemble. In contrast, the skill tends to increasewith

ensemble size, provided the skill is sufficiently large.

The predictability of week-3–4 temperature and pre-

cipitation CFSv2 hindcasts projected onto individual

FIG. 3. Correlation skill of week-3–4 temperature and precipitation CFSv2 hindcasts over

CONUS during January and July from 1999 to 2010 (12 yr). The hindcasts are based on

a 4-day lagged ensemble (comprising 16 members drawn from 43 daily hindcasts). Values

that are statistically insignificant at the 5% level (according to the permutation test) are

masked out. The percentage area with significant correlation skill (positive and negative) is

indicated in the title of each panel.
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Laplacian eigenvectors is shown in Fig. 5. Predictability is

quantified by the SNR F/E, where F is defined in (2). We

use E5 2, which is equivalent to analyzing differences

between hindcasts initialized 6h apart, as done in weather

prediction studies (Simmons andHollingsworth 2002). The

figure reveals that several spatial structures of winter tem-

perature and precipitation and summer temperature are

predictable. Summer precipitation also is predictable but

for fewer spatial structures. In general, temperature ismore

predictable than precipitation, and winter is more predict-

able than summer. Note, however, that precipitation is

more predictable than temperature for certain components

during winter (e.g., eighth and ninth components).

Although the above results demonstrate week-3–4

predictability, this result does not necessarily imply that

the associated hindcasts are skillful (i.e., that the hind-

casts can predict observed anomalies with skill). In most

cases, mean square error shows no significant skill. Ac-

cordingly, we consider skill based on correlation, which

is invariant to linear transformations of the forecast and

thus does not penalize biases or errors in forecast am-

plitude. The skills of the hindcasts based on a 4-day

lagged ensemble are shown in Fig. 6. The figure shows

that many spatial structures of winter temperature and

precipitation and summer temperature can be predicted

with skill by 32 4-week hindcasts. The fact that skill

exists for correlation but not for mean square error

suggests that an amplitude correction is necessary for

skill. Only one spatial structure (i.e., the 19th) of sum-

mer precipitation has skill exceeding the relevant sig-

nificance level, but it is unlikely that it would be

significant after the multiple comparisons required to

identify it are taken into account. Thus, we conclude that

large-scale week-32 4 winter temperature and pre-

cipitation and summer temperature can be predicted

with skill but find little evidence that large-scale, sum-

mer precipitation can be predicted with skill at weeks

32 4.

Although no individual Laplacian eigenvector has

significant skill for summer precipitation, this result does

not necessarily imply that summer precipitation cannot

be predicted with skill. In particular, it is possible that

some linear combination of eigenvectors can be pre-

dicted with skill. To test this possibility, we apply

FIG. 4. (top) Predictability and (bottom) skill of week-3–4 CFSv2 hindcasts of January tem-

perature for individual eigenfunctions as a function of ensemble size (measured in days spanned

by the lagged ensemble). The numbered labels indicate the Laplacian eigenfunction.
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predictable component analysis to find linear combina-

tions of Laplacian eigenvectors that maximize

predictability. A critical step in this procedure is

selecting the number of eigenvectors. This step is tan-

tamount to a model selection problem and is one of the

most challenging problems in statistics (Fukunaga 1990;

Hastie et al. 2003; Taylor and Tibshirani 2015). Fortu-

nately, we have found that our results are not sensitive to

the precise number of eigenvectors in the range of 92 20

eigenvectors (we did not look beyond 20). To further

validate our results, we have partitioned the years into

two parts, a training sample in which the most predict-

able components are identified and a verification sample

onto which the predictable components are projected

and used as an independent test of predictability. We

find that the predictability and skill in the verification

sample tends to saturate after about 9 eigenvectors and

remains nearly the same (or even grows) by 20 eigen-

vectors (not shown). The time series and associated re-

gression pattern corresponding to individual predictable

FIG. 5. Predictability (as measured by the SNR) of week-3–4 temperature and precipitation

hindcasts over the CONUS during January and July from the CFSv2 for individual Laplacian

eigenvectors (the first 10 of which are shown in Fig. 1). Different symbols correspond to

different variables and months, as indicated in the bottom legend. The dashed lines show the

5% significance threshold estimated from 10 000 permutation samples, using the color cor-

responding to the relevant variable and month (e.g., the black dashed shows the significance

thresholds for the black dots corresponding to January temperature). The SNRs below the

smallest significance threshold are not shown.

FIG. 6. Correlation skill of 4-day lagged ensemble hindcasts of week-3–4 temperature and

precipitation over CONUS from the CFSv2 for individual Laplacian eigenvectors (the first 10

of which are shown in Fig. 1). The format of the figure is similar to Fig. 5.
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components are virtually independent of the number of

eigenvectors greater than five or so. For subsequent

calculations, we use the same number of eigenvectors

(viz., nine) for all months and variables.

The maximized signal-to-noise ratios for CFSv2

week-3–4 hindcasts are shown in Fig. 7. As above, we use

ensemble size E5 2 corresponding to differences be-

tween hindcasts initialized 6 h apart. The shaded area

shows the 95% confidence intervals for no pre-

dictability. The results suggest that all components are

predictable (because all results lie outside the shaded

confidence region). However, precipitation components

near the trailing end tend to be only marginally signifi-

cant. There is a ‘‘kink’’ in the signal-to-noise spectra at

one or two components, indicating predictability sig-

nificantly greater than the background significance

threshold.

The regression map between the most predictable

component time series and relevant field is shown in

Fig. 8. The winter temperature and precipitation pat-

terns are similar to the observed ENSO teleconnection

patterns derived frommonthlymeans (Yang andDelSole

2012), suggesting that CFSv2 week-3–4 predictability

arises from El Niño/La Niña events. The summer temper-

ature pattern also bears some resemblance tomodel–ENSO

teleconnection patterns (e.g., compare to Fig. 7 of Wang

et al. 2012), but the correspondence to the summer pre-

cipitation pattern is weak.

The skills of the predictable components are shown in

Fig. 9. The figure shows that the most predictable com-

ponents have skill at weeks 3–4 for winter temperature

and precipitation and summer temperature. In contrast,

the most predictable component of summer pre-

cipitation has no significant skill (it is too small to appear

in the figure). About two to three predictable compo-

nents of winter temperature and precipitation and

summer temperature have skill. Confidence intervals for

the correlation skills overlap (not shown), indicating

that the correlations cannot be distinguished. It follows

that the ranking according to skill cannot be determined

based on the available data. Thus, the fact that the most

predictable component is not the most skillful is not

necessarily meaningful.

To gain insight into the nature of the predictability

and skill, we show in Fig. 10 time series of the most

predictable components. These time series confirm that

secular trends are small. In addition, for the components

with the most skill, the time series exhibit relatively

large jumps between years but relatively small fluctua-

tions within a year. This feature suggests that the

FIG. 7. Maximized SNRs of CFSv2 week-3–4 hindcasts of temperature and precipitation

over CONUS. The maximization is performed using the first nine Laplacian eigenfunctions

over CONUS, which are shown in Fig. 1. The shaded region shows the 95% confidence in-

terval for no predictability estimated by permutation methods.
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predictability comes from predicting the overall mean

during the month rather than predicting variations

within the month. To test this possibility, the forecasts

within a month were decomposed into the sum of two

terms, a monthly mean plus an anomaly relative to the

monthly mean, and then the correlation skill of these

two components were computed separately. The result,

shown in Fig. 11, shows that skill associated with the

FIG. 8. Regression coefficients between the most predictable component time series and the

associated variable. The regression map is derived by regressing time series onto the first 20

Laplacian eigenvectors. The choice of 20 imposes an implicit level of spatial smoothing. Thepattern

is normalized to lie between21 and 1, and themultiplicative factor to obtain kelvins or mmday21

for temperature and precipitation, respectively, is indicated in the title above each panel.

FIG. 9. The correlation skill between the predictable components (i.e., components that

maximize the SNR) of week-3–4 temperature and precipitation hindcasts from CFSv2 for

over CONUS. The format of the figure is similar to Fig. 5.
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monthly mean often dominates. Moreover, skill in pre-

dicting the anomalies rarely exceeds 0.35, whereas skill

in predicting monthly means frequently exceeds 0.35.

Given that predictability appears to be dominated by

the monthly mean component, it is reasonable to ex-

plore relations with other variables by computing cor-

relations between monthly mean quantities. The

simultaneous squared correlation between each pre-

dictable component in CFSv2 and the Niño-3.4 index is

shown in Fig. 12a. We call this measure R2 because it

corresponds to the coefficient of determination of a re-

gression model for predicting the component based

on Niño-3.4. Because the Niño-3.4 index is persistent

on weekly time scales, its value in themodel is very close

to its initial value, which in turn is close to the obser-

ved value. Thus, these correlations measure the

ENSO teleconnections in the model. We see that the

most predictable components of winter temperature

and precipitation in CFSv2 are highly correlated

with ENSO.

In addition to ENSO, the MJO often is cited as a

phenomenon that may give rise to subseasonal pre-

dictability (Vitart 2014). To explore this, we compute

the coefficient of determination between the predictable

component and the RMM1 and RMM2 indices defined

in Wheeler and Hendon (2004). These indices were

computed from daily CFSv2 fields, then averaged over

week-3–4 hindcasts, and then averaged over the month

so that a correlation could be computed using only

monthly values. The coefficient of determination R2 is

the correlation between the predictable component and

the best linear combination of RMM1 and RMM2 and

measures the fraction of variance of the predictable

component that can be predicted from the MJO indices.

The R2 values computed from monthly mean quantities

are shown in Fig. 12b and reveal that the most

FIG. 10. Time series of the most predictable components of week-3–4 CFSv2 hindcasts of

(left) temperature and (right) precipitation over CONUS. Each time series shows a 2-week

mean of a variable: for observations (red), this time series corresponds to a 2-week running

mean and serves as verification; for hindcasts (black), each 2-week mean is computed sepa-

rately by averaging leads 15–28 days of each hindcast initialized on each day of the month.

Forecasts initialized on consecutive days in a given month are plotted as a single time series

for each year; a time series beginning on the first of the month (indicated by a dot) is dis-

connected from time series of the previous year. The title of each panel indicates the month

and variable of the predictable component. The correlation coefficient between the observed

and hindcast time series is indicated in the title of each panel.

15 MAY 2017 DEL SOLE ET AL . 3509

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/10/21 06:02 PM UTC



predictable component of winter temperature and pre-

cipitation are significantly correlated with MJO activity.

It is well known that ENSO and MJO activity tend

to be correlated. This correlation confounds the in-

terpretation of pairwise correlations. To clarify the re-

lations further, we quantify the degree of relation after

one of the indices has been regressed out. A convenient

measure of the degree of relation betweenX andY, after

Z has been removed, is

R2
YXjZ 5

SSE(Y jX)2 SSE(Y jXZ)

SSE(Y jX)
, (13)

where SSE(Y jX) is the sum square error of a regression

prediction of Y based onX, and SSE(Y jXZ) is the sum

square error of a regression prediction of Y based on X

and Z. The constant term is understood to be included

in all regression models. The quantity R2
YXjZ lies be-

tween 0 and 1 and can be interpreted as the fraction of

variance of Y explained by Z after the linear relation

with X has been removed from all variables. In the

case of ENSO after MJO has been removed (Fig. 12c),

only the leading predictable component of winter

precipitation shows a significant relation with ENSO.

In contrast, the leading component of winter temper-

ature has a significant correlation with ENSO (see

Fig. 12a), but not after the MJO has been removed

(which has an R2 of about 0.4, just below the signifi-

cance threshold; see Fig. 12c). This result does not

necessarily mean the leading component of winter

temperature is unrelated to ENSO, but rather that a

correlation could exist but the sample size (i.e., 12 yr)

may be too small to detect it. In the case of MJO after

ENSO has been removed, shown in Fig. 12d, the third

and fourth predictable components of winter pre-

cipitation show a significant relation with MJO.

For completeness, we note a similar analysis was

performed using the North Atlantic Oscillation (NAO)

index and MJO indices. We find that the correlations

with the predictable components are marginally signifi-

cant but that these correlations become insignificant

when MJO has been regressed out (not shown).

5. Conclusions

This paper shows that an operational forecast model

skillfully predicts week-3–4 temperature and pre-

cipitation over the contiguous United States. This skill

can be identified at the gridpoint level (about 18 3 18)
and by projecting data onto an orthogonal set of large-

scale CONUS patterns (as derived from the eigenvec-

tors of the Laplacian operator). An important aspect of

this identification is a permutation significance test that

accounts for serial correlation on daily time scales. Skill

is detected based on correlation measures but not

based on mean square error measures, indicating that

an amplitude correction is necessary for skill. Our re-

sults differ from those of Li and Robertson (2015)

perhaps because we analyzed weeks 32 4 together

rather than separately and only one month at a time

was analyzed.

Winter temperature and precipitation tend to have

more predictability than their summer counterparts,

with summer precipitation having the weakest pre-

dictability of all quantities considered in this paper. In

addition, the most predictable components were

identified by finding linear combinations of Laplacian

eigenvectors that maximize signal-to-noise ratio.

The results of this maximization procedure clarify the

spatial structure of the predictable variability. The

most predictable component during winter effectively

represents the model’s ENSO teleconnection pattern.

Some predictable components of winter precipitation

are associated with MJO activity. The skill of the

predictable components is dominated by the skill in

predicting the mean value during a month rather than

FIG. 11. Skill of predictable components for week-3–4 CFSv2

hindcasts of temperature and precipitation over CONUS. The

week-3–4 forecasts within a month were decomposed into the sum

of two terms, a monthly mean and an anomaly relative to the

monthly mean, and then the correlation skill of the two compo-

nents were computed separately. The skill of predicting monthly

means is shown on the x axis, and the skill of predicting anomalies is

shown on the y axis. The shaded box indicates areas in which both

skills are below 0.35 (an approximate 5% significance threshold).

The number label indicates the order of the predictable compo-

nent, and the different colors denote different months and vari-

ables, as indicated in the legend key.
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from predicting anomalies relative to the monthly

mean. By explicitly identifying patterns in an opera-

tional forecast model that are predictable on sub-

seasonal time scales and demonstrating that these

patterns can be predicted with skill in observations, the

above results provide a scientific basis for week-3–4

predictions.
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